Deposition Rates of High Power Impulse Magneton Sputtering

TitleDeposition Rates of High Power Impulse Magneton Sputtering
Publication TypeConference Paper
Year of Publication2008
AuthorsAndré Anders
Conference Name51st Annual Technical Meeting of the Society of Vacuum Coaters
Date Published04/2008
Call NumberLBNL-170E
Abstract

High power impulse magnetron sputtering (HIPIMS) is seen by many as the new paradigm in sputtering. It provides significant self-ion assistance to film growth. However, many noticed that deposition rates are reduced, often to less than 50%, compared to direct current (DC) sputtering rates at the same power input. It is argued here that the reduction is based on the physics of sputtering and self-sputtering, and it should not come as a surprise. Four effects can be distinguished (i) the yield effect caused by the less-than-linear increase of sputtering yield with ion energy, (ii) the impedance effect, influencing what fraction of the target-anode voltage drops in the sheath, (iii) the species effect associated with a change of ions causing sputtering, and (iv) the return effect associated with flux splitting in selfsputtering. The paper is completed by considering some business implications, in particular; it is argued that HIPIMS is a different technology and that its value should be judged comprehensively, not just by rates. Finally, the special case of temperature dependent sputtering is considered, which in some cases may lead to rates exceeding the DC rates.

LBNL Report Number

LBNL-170E